Oriental motor

Procedure for Introducing Custom-Built Robots

- The Advantages of Custom-Built Robots
- · Case Study of a Custom-Built Robot
- From Considering Automation to Robot Assembly

 \bigcirc

- \cdot The Features of the Robot Controller
 - MRC01

Contents

1. The Advantages of Custom-Built Robots

P3~

This section discusses the advantages of custom-built robots.

2. Case Study of a Custom-Built Robot for Oriental Motor Production Equipment

P5~

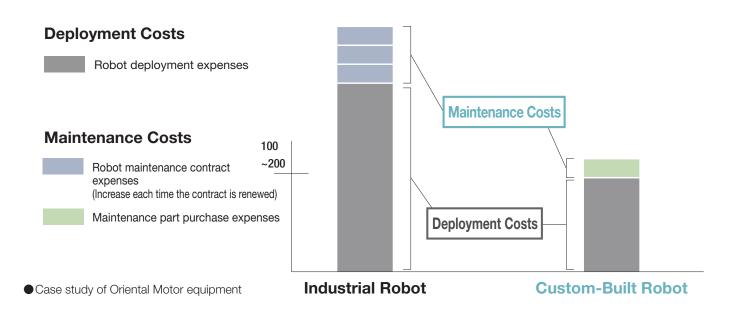
This section discusses a custom-built robot that has been adopted into Oriental Motor equipment.

3. From Considering Automation to Robot Assembly

This section discusses the procedures required for in-house production.

- Confirmation of the movements to be achieved
- Determination of the robot type
- Robot arm design
- Select motor
- Preparation of parts
- Assembly procedure
- Setup
- Operation check

4. The Features of MRC01


P16

This section discusses the robot controller **MRCO1**, which simplifies multi-axis robot control.

The Advantages of Custom-Built Robots

Reduction of the Total Cost Associated with Introducing a Robot

The initial cost is not the only cost reduced when introducing a robot. In-house production also reduces the maintenance costs after adoption. This decreases the total cost.

Shortened Time to Recover after Stoppage from Robot Malfunction

The cause of a malfunction can be identified and parts replaced in-house. Having maintenance parts on-hand minimizes the blow from a mass production equipment malfunction.

nom a mado prod			Tim	е							
Custom- Built		1) Cause Identification		overy	Recov	er in as	Little a	is 30			
Robot		2 Parts Replacement		Reco	Minut	es the S	ame D	Day!			
	Motor Failure Arm Damage	 Inquiry with Manufacturer 								2	
Industrial Robot	Ann Danlage	② Arrangement of Support Schedule					1			ecovel	
		③ Repairs			Typically Occurs Another Day					Å	

• Case study of Oriental Motor equipment

Maintenance Can Be Handled In-House After Adoption

Cost Reduction and Space Saving Through Maintenance at the Part Level

Industrial Robot

Maintenance robot is required (separate from operating unit)

Storage space must be secured

Even if multiple robots are introduced, the common parts can be maintained altogether

Maintenance-free with the AZ Series

With industrial robots, regular maintenance is recommended. (Batteries are replaced about once a year.)

Have these situations ever happened?

- Management became dependent upon individual efforts and years passed without anything being done
- Planning for maintenance is troublesome
- Location information was lost due to battery replacement

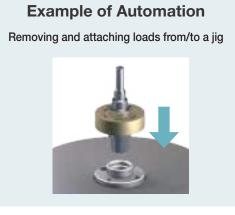
XSTEP AZ Series

- The battery-free sensor eliminates the need for battery replacement
- Big product line of products that don't require greasing


4

Case Study of a Custom-Built Robot for In-House Production Equipment

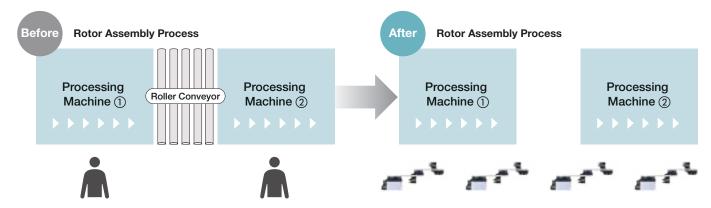
Four horizontally articulated robots were introduced in the assembly process of motor parts. Production capacity more than doubled thanks to the activation of human resources.



Load removal and attachment by hand while moving between equipment

Automated with robots The line configuration was reviewed at the same time

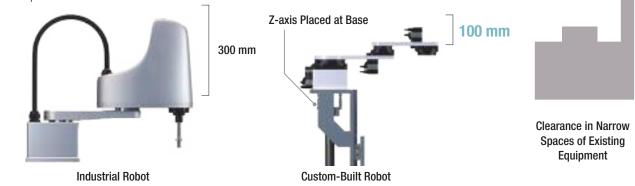
Gap between shaft and hole: 0.016 mm - 0.054 mm



Standardized design and horizontal development of the same units

Point 1: Existing Process Equipment Remains in Place

Load removal/attachment work automated


Introducing four horizontally articulated robots reduces the number of personnel in the rotor assembly process from two to zero.

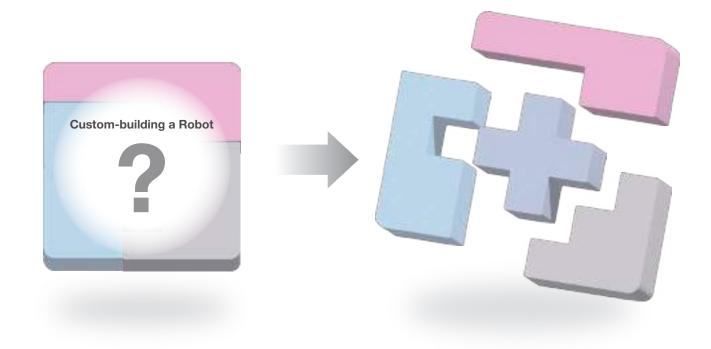
Point 2: Optimal Design for the Equipment

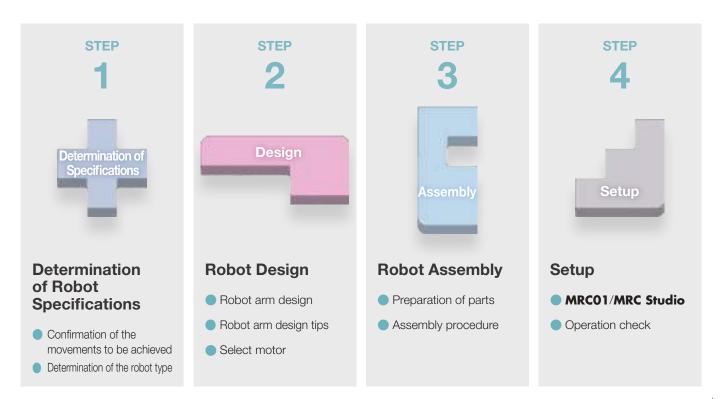
Height restrictions at the load entrance make it difficult to introduce industrial robots

The Z-axis is placed at the base, so the arm portion can be designed thinner and fit into narrow spaces.

Point 3: Basic Design Can Be Repurposed

Arm length can be customized for each model according to equipment height and transport distance

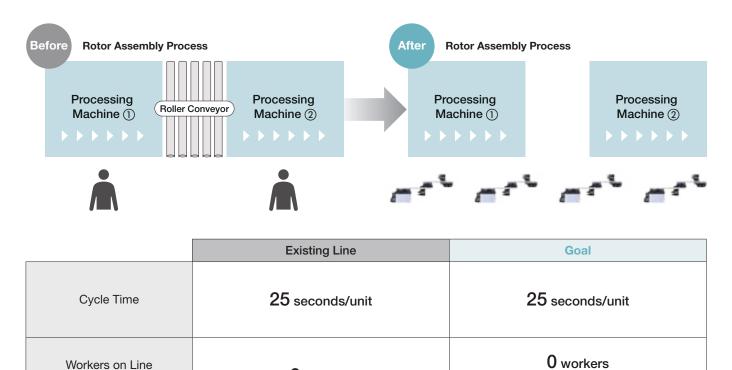

Since the shape and number of axes are the same, selection calculations are completed only by changing the numerical values.



6

From Considering Automation to Robot Assembly

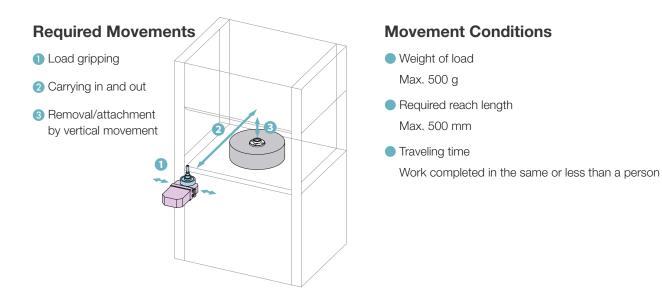
We will introduce the procedure for custom-building a robot that matches a desired movement, based on actual examples.



STEP 1 Determination of Robot Specifications

Confirmation of the Movements to be Achieved

Purpose of Introducing Robots


Automation of inter-process load transporting, reducing personnel.

Personnel Reduced by Two

Specifications and Requirements for Custom-Built Robots

2 workers

(Excluding catering)

Determination of the Robot Type

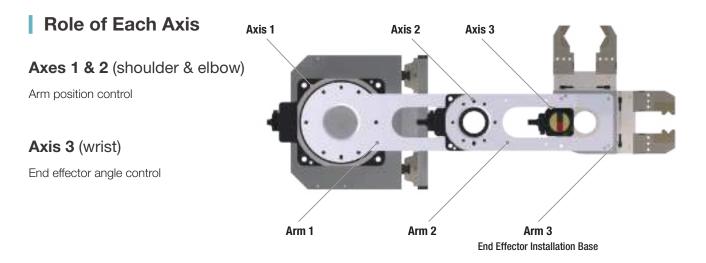
It is important to select the appropriate robot type, taking into account the required movements and any restrictions on the introduction of robots.

MRC01-Compatible Robot Types and Features

	Vertical Articulated Horizontal Articulated Robot Robot (SCARA Robot)		Cartesian Robot	
	X Y	x y	X X X X X X X X X X X X X X X X X X X	
Moving Range	Wide	Narrow Compared to a Cartesian robot, the moving range in the Y-axis direction is wider	Narrow	
Installation Area	Nar	Wide		
Positioning Accuracy	Difficult to act	Easy to achieve accuracy		
Rigidity	Lo	High		
Speed	Slow	Fast	Fast	
Size of Loads that can be Handled Small to large		Small	Small to large	

Points to Consider when Determining the Robot Type

The reasons for introducing horizontally articulated robots for in-house equipment are summarized below.


Selection Requirement	Aim	Vertical Articulation Robot	Horizontal Articulated Robot	Cartesian Robot
Installation Area	Installation in limited space	0	0	Δ
Moving Range	Height restriction at equipment entrance	0	0	0
Movements Required of Robot	Removal & attachment and transportation (no twisting motion required)	Over-performance	0	0

STEP 2 Robot Design

Robot Arm Design

Required time: About 5 days

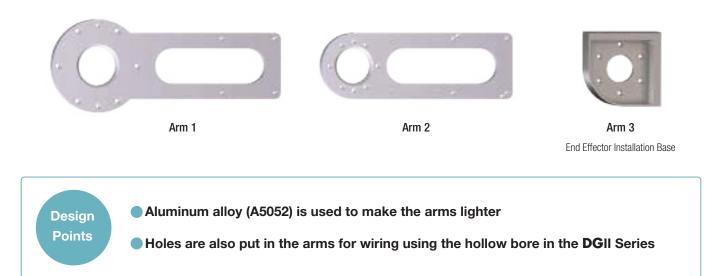
Robot configuration: 3-axis horizontal articulated robot + elevating axis (base) + end effector

Total Arm Length

Point

Target is distance from robot installation point to target point + 10%

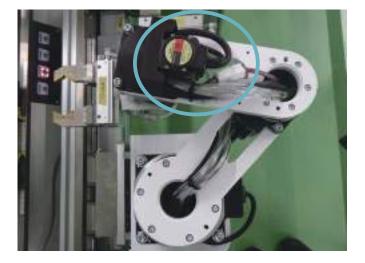
- Generous length design is required. If the arms are fully extended, the robot cannot be controlled.
- Excessive leeway increases the load on the motor and limits the transportation speed, etc.


Point 2 Ratio of Length of Each Arm

Arm 1:Arm 2:Arm 3 = 4:3:1 (estimate)

- If Arm 2 is too short relative to Arm 1, there will be a blind spot near the base of the robot.
- Arm 3 is used for end effector angle control.
 The length must be such that the end effector and
 Arm 2 do not interfere with each other in the desired angular range of rotation.

Use of the DGII Series Simplifies Arm Design Installation type: Surface mounting No couplings or other fastening parts needed. Can be mounted by putting screw holes in the plate.


Robot Arm Design

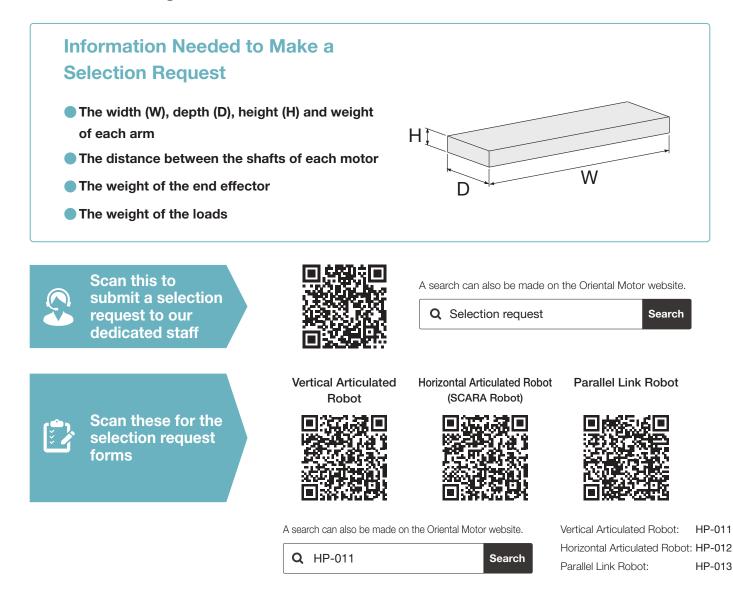
Robot Arm Design Tips

A Little Bit of Ingenuity Leads to a Wired Smart Robot

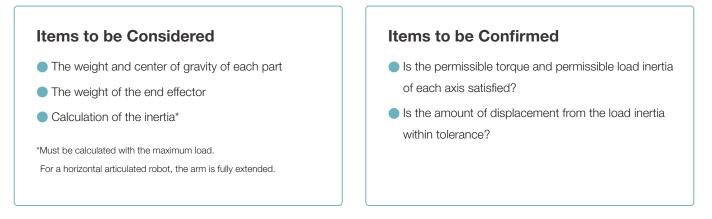
Lighter & Organized Wiring

Less Arm Bulk

- Reduced burden from lighter weight
- Shorter takt time
- Useful for cable wiring



Additional Tapped Holes for Securing Zip Ties


Secure cables that tend to bulge out

Motor Selection

Take Advantage of Oriental Motor's Selection Service

For Customers Who Want to Make the Choices Themselves

STEP 3 Robot Assembly

Preparation of Parts

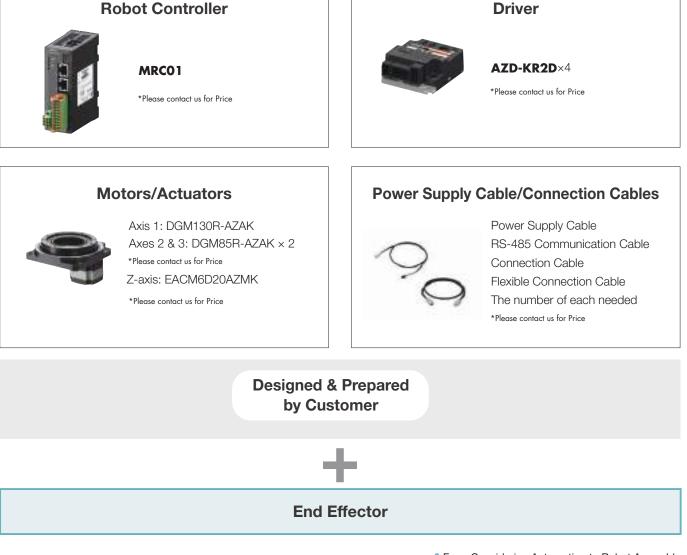
Robot Body

- Arm
- Motors/Actuators

Controller

- Robot Controller
- Driver

Connection Cables



Required time: About 2 hours

Controller

Stored together in one case

Assembly Procedure

Required time: 1 day

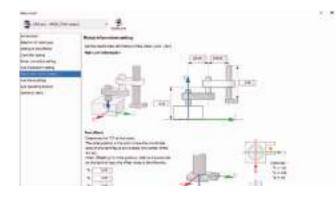
When assembling, we recommend starting from the base and installing in sequence toward the end effector.

2 to 6 are tightened with screws after establishing accuracy with positioning pins

An example of a custom-built, compactly designed horizontal articulated robot is also available

A search can also be made on the Oriental Motor website.

 Q
 Example of custom-built SCARA robot (horizontal articulated robot)
 Search


STEP 4 **Setup**

MRC01/MRC Studio

Required time: 30 minutes

Connect MRC01 to the robot and launch MRC Studio

Follow the on-screen instructions to "Select an item" or "Enter arm length"

Easy setup following the guide Intuitive operation following the illustrations

Operation Check

Unit Test

Confirm each movement to be achieved.

- Can loads be gripped?
- Can it reach the transportation position?
- Can it raise and lower?

Integration Test

Combine each movement and confirm that there are no problems with the sequence of movements.

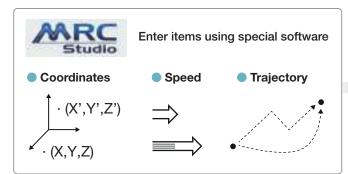
System Test

Connect to the PLC and confirm that the equipment operates without any problems.

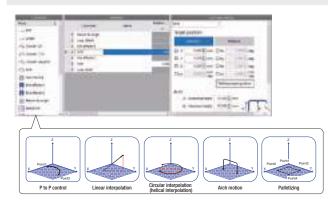
Movements Required

- 1 Load gripping
- 2 Carrying in and out
- 3 Removal/attachment by vertical movement

3 From Considering Automation to Robot Assembly 15

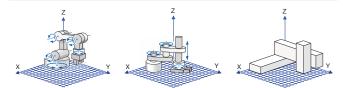

Ò

The Features of MRC01


The arithmetic processing, operation program creation, and commands necessary for robot control can be accomplished with a single unit

Various knowledge about "Networks", "Ladder programs", and "Kinematics operations" is needed to run custom-built robots. By utilizing the robot controller **MRC01**, custom-built robots can be implemented even without robot control experience.

> Arithmetic Processing



Simple Programming

- Select the action needed from a wide variety of commands
- No ladder program knowledge required
- Signal input standby and signal output can also be set using MRCO1

Compatible with Multiple Robot Types

Select the robot type best suited to the task at hand

Command &
Control Control MRC01 Custom-Built Robot

Linking with Host Device Possible

- Operation commands to the robot can be sent directly via EtherNet/IP
- Direct I/O operation without the use of a PLC is possible

Synchronous Control of Various Movements

- Connect and control products equipped with the **AZ** Series
- Linear motion, rotation, and end effectors are controlled with a single unit

Scan this for details about the special software **MRC Studio** (free) ►

It can also be found on the Oriental Motor website.

Q mrc studio

Search

Oriental Motor Asia Pacific Pte. Ltd.

2 Kaki Bukit Ave 1 #05-06 Singapore 417818 TEL: +65-6745-7344 FAX: +65-6745-9405 http://www.orientalmotor.com.sg/

Oriental Motor (Thailand) Co., Ltd.

Headquarters & Bangkok Office 63 Athenee Tower, 6th Floor Unit 603, Wireless Rd, Lumpini, Pathumwan, Bangkok 10330, Thailand TEL: +66-2-251-1871 FAX: +66-2-251-1872 http://www.orientalmotor.co.th/

Oriental Motor (India) Pvt. Ltd.

No.810. 8th Floor, Prestige Meridian-1 No.29, M.G.Road, Bangalore, 560001, India TEL: +91-80-41125586 FAX: +91-80-41125588 http://www.orientalmotor.co.in/

Oriental Motor (Malaysia) Sdn. Bhd.

Headquarters & Kuala Lumpur office A-13-1, North Point Offices, Mid Valley City, No.1 Medan Syed Putra Utara 59200 Kuala Lumpur, Malaysia TEL: +60-3-22875778 FAX: +60-3-22875528

Penang office 3-1-3A, Queens Residence Q2, Persiaran Bayan Indah, 11900, Bayan Lenas

Bayan Indah, 11900, Bayan Lepas TEL: +60-4-6423788 FAX: +60-4-6425788 http://www.orientalmotor.com.my/

For more information please contact: